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------------------------------------------------------------------ABSTRACT----------------------------------------------------------------- 
In the uniprocessor environment, the number of jobs arriving at the processor of CPU at a time is very large which causes a 
long waiting queue. When conflict arises due to shared resources or overlap of instructions or logical error, the deadlock 
state appears where further processing of jobs is blocked completely. While the scheduler jumps from one job to another in 
order to perform the processing the transition mechanism appears. This paper presents a general structure of transition 
scenario for the functioning of CPU scheduler in the presence of deadlock condition in setup of multilevel queue 
scheduling. A data model based Markov chain model is proposed to study the transition phenomenon and a general class of 
scheduling scheme is designed. Some specific and well known schemes are treated as its particular cases and are compared 
under the setup of model through a proposed deadlock-waiting index measure. Simulation study is performed to evaluate the 
comparative merits of specific schemes belonging to the class designed with the help of varying values of α and d.    
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1. INTRODUCTION  

Operating system plays a major role in managing 
processes arriving through single or multiple queues. Arrival 
or occurrence of a process is random along with different 
categories and types. All these require specific scheduling 
algorithms to work on over real time environment with 
special reference to task, control and efficiency. The 
randomization involved in scheduling procedure motivates 
to perform a probabilistic study. Cobb et al. [1] picked up 
fair scheduling of flaros with the consideration of time 
shifting approach in the area of high-speed networks 
whereas David [2] has discussed  contribution over the study 
of real time and conventional scheduling with a comparative 
analysis.   Demer et al. [3] presented an analysis of Fair 
Queuing algorithm. Goyal [4] derived the Hierarchical CPU 
scheduler in the environment where the multimedia 
operating system is used. In the similar lines, Hieh [5] 
discussed smart schedulers for multimedia users. A time 
driven scheduling model is proposed by Janson [6] attracted 

attention of researchers for the model formation over 
functioning and procedure on operating systems.  

Medhi [7] has given an elaborate study of a variety 
of stochastic processes and their applications in various 
fields. Naldi [8] presented an idea of development of 
Markov chain model for understanding the internet traffic 
sharing among various network operators in a competitive 
market. Shukla and Jain [9] have a discussion on the use of 
Markov chain model for multilevel queue scheduler in an 
operating system. Shukla et al. [10] derived an application of 
Markov chain model for the study of transition probabilities 
in space division switches in computer networks. Some other 
useful contributions over detailed methodological 
description of operating system are due to Silberschatz and 
Galvin [11], Stalling [12] Tanenbaum [13], Shukla and 
Thakur ([14], [15], [16], [18]), Jain et al. [17] and Shukla 
et.al. ([19], [20]).  Deriving a motivation from these, a class 
of scheduling schemes is designed in this paper for 
performing an integrated approach of efficiency comparison 
under the assumption of Markov chain model and using a 
data model approach with deadlock index measure. 
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1.1 Deadlock Based General Class of Multi-Level Queue   

Scheduling 
 
Suppose a multi-level queue scheduling with four queues 
Q1,Q2,Q,3,Q4 each having large number of processes 
Pj,Pj',Pj",Pj"'(j=1,2,3�.) respectively waiting for processing. 
Define four queues Q1(i=1,2,3,4) like the four states of 
scheduling system with addition of two other specific states 
Q5 and Q6. First four states are related to arrival and 
inputation of processes while the last two associate with 
deadlock and waiting of scheduler. A quantum is a small 
pre-defined slot of time given for processing, to waiting 
processes in queues. Symbol n denotes the nth quantum 
allotted by the scheduler to a process for execution 
(n=1,2,3,4�). Using above, the structure of given class is:  

 
(1) All the first four queues Q1,Q2,Q,3,Q4 are allowed 

to accept a new process with initial            

probabilities pr1,pr2,pr3,pr4 






 =∑
=

4

1
1

i
ipr  

(2) Scheduler has a random movement over all states 
Qs(s=1,2,3,4,5,6) on quantum variation. 

(3) Scheduler starts processing of any Qi with 
probability pri (i=1,2,3,4), then picks up the first 
process of that queue and allot a quantum for 
processing. 

(4) Process remains with processor until the quantum 
is over. If it completes within that, then gets out 
of Qi . 

(5) Within quantum, if a process did not complete, 
scheduler assigns next quantum to the next 
process of the same queue and so on. The earlier 
incomplete process moves to next queue 
Qi+1((i+1)≤4) and waits until next quantum to be 
allotted for its processing. 

(6) States Q5 and Q6 are used as resting the transition 
system like idle state or deadlock state. 

(7) Specific conditions over resting (or restricting) 
transition shall be undertaken within using this 
class.   

(8) Quantum allotment procedure, within Qi , by 
scheduler, continues until Qi is empty. The 
scheduler jumps from any state to any other state 
at the end of a quantum. When Q1,Q2,Q,3,Q4  are 
empty, scheduler moves towards states Q5 or Q6. 
The characters of Q5  and Q6 are different and to 
be defined under the different schemes. 

(9) Scheduler attempts processing in queue Q4 on 
�first come first serve� basis. Any incomplete 
process or new process, if appears in Q4, remains 
with Q4 only until processed completely. 

 

2. Markov Chain Model 
Let{x(n),n≥1} be a Markov chain where x(n) denotes the 

state of the scheduler at the 
thn  quantum of time. The state 

space for x(n) is{Q1,Q2,Q,3,Q4,Q5,Q6} where scheduler X 
moves stochastically over these in different quantum. 
Predefined initial selection probabilities of states are: 

P[X(0)=Q1]=pr1 

P[X(0)=Q2]=pr2 

P[X(0)=Q3]=pr3 

P[X(0)=Q4]=pr4 

P[X(0)=Q5]=pr5 

P[X(0)=Q6]=pr6 

with pr1+pr2+pr3+pr4+pr5+pr6=∑
=

=
6

1
1

i
ipr , where pr5=W. 

 

 

   

 

 

 

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2 (Unrestricted Transition Diagram) 
 
Let sij(i,j=1,2,3,4,5,6) be transition probabilities of scheduler 
over six states then unit-step transition probability                   
matrix for ( )nX  is  
            ( ) ( )[ ]j

n
i

n
ij QXQXPs === −1/ ;  

 

Fig. 2.1 (General Multi-level Queue System Diagram) 
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The state probabilities, after first quantum can be obtained 

by a simple relationship: 
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Similarly, the state probabilities after the second quantum 
could be obtained by simple relationship 
 

 

 

Remark 2.1  In the similar way, for n quantum, the 
generalized expressions are: 
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3. Mathematical Data Model 
The basic and scientific approach for data analysis relates to 
state transition probabilities managed through a linear data 
model with two parameters α and d. The i stands for queue 
numbers and the descriptions are given below: 

 
 
 
 
 
 
 
 
 
 

 

 

           Q1  Q2  Q3  Q4  Q5 Q6 
Q1       s11  s12  s13  s14  s15  s16   
Q2       s21  s22  s23  s24  s25 s26 

Q3       s31  s32  s33  s34  s35 s36 

Q4       s41  s42  s43  s44  s45 s46 

Q5       s51  s52  s53  s54  s55 s56 

Q6          s61  s62  s63  s64  s65  s66 

X(n-1) 

X(n) 

                     Q1          Q2             Q3             Q4        Q5               Q6 

           Q1      α           α +d.i      α +2d.i     α +3d.i    α +4d.i     1-(5 α +10d.i)     

           Q2      α+d.i    α +2d.i    α +3d.i      α +4d.i    α +5d.i     1-(5 α +15d.i)          

           Q3      α+2d.i  α +3d.i    α +4d.i      α +5d.i    α +6d.i     1-(5 α +20d.i) 

  Q4     α+3d.i   α +4d.i    α +5d.i      α +6d.i    α +7d.i    1-(5 α +25d.i) 

  Q5     α+4d.i   α +5d.i    α +6d.i      α +7d.i    α +8d.i    1-(5 α +30d.i) 

  Q6     α+5d.i   α +6d.i    α +7d.i      α +8d.i    α +9d.i    1-(5 α +35d.i)           
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Fig 3.1 (Model matrix) 
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4. Graphical Analysis on Data Model 
 
Case I with α=0.1  
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Case II with α=0.12 
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Fig. 4.1.1 (α=0.1, d=0.002) 

Fig. 4.1.2 (α=0.1, d=0.004) 

Fig. 4.1.3 (α=0.1, d=0.006) 

Fig. 4.1.4 (α=0.1, d=0.008) 

Fig. 4.2.1 (α=0.12, d=0.002 ) 

Fig. 4.2.2 (α=0.12, d=0.004 ) 

Fig. 4.2.3 (α=0.12, d=0.006 ) 

Fig. 4.2.4 (α=0.12, d=0.008) 
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Case III with α=0.14 
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Case IV with α=0.16 
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Fig. 4.3.1 (α=0.14, d=0.002 ) 

Fig. 4.3.2 (α=0.14 , d=0.004 ) 

Fig. 4.3.3 (α=0.14 , d=0.006 ) 

Fig. 4.3.4 (α=0.14 , d=0.008 ) 

Fig. 4.4.1 (α=0.16,d=0.002 ) 

Fig. 4.4.2 (α=0.16,d=0.004 ) 

Fig. 4.4.3 (α=0.16,d=0.006 ) 

Fig.4.4.4 (α=0.16,d=0.008 ) 
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Case V with α=0.18 
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5. Discussion on Graphs 
 
For case I 
With α=0.1 and d varying from 0.002 to 0.008 with an 
interval of 0.002 at each steps, we find that the initial chance 
of Q6 being entertained by the processor is very high, which 
correspondingly decreases with increasing values of d. A 
remarkable drop noticed in the processing probability of Q6 
when d reaches to the value of 0.008. 
 
For case II 
With α=0.12 and d within the model in the same steps of 
0.002 in the range of 0.002 to 0.008, the difference between 
the processing chances of queues Q1,Q2,Q3 and Q4 and that 
of Q6 is decreasing. Secondly, the drop in processing 
probability of Q6 is noticed but at a step earlier to the 
previous one. 
 
For case III 
The noticeable difference in combinations of α and d is seen 
in the graphs where all the queues are showing a stable 
pattern of being processed. 
 
For case IV 
The drop in the processing probability of Q6 again moves 
one step ahead and attained at d=0.004. 
 
For case V 
This case all together eliminates the chance of Q6 being 
processed at the earliest stage of d=0.002 itself. 
 
6. Waiting Index Analysis   
 
 For the state Q6=D, a deadlock index [I(n)] is defined 
below: 
 
[I(n)] case = P[x(n)=Q5] / [P[x(n)=Q5] + P[x(n)=Q6]]                    
where �case� denotes different conditions of varying values 
of α and d.[case= I, II, III and IV].  

 The above equation is a relative measure of scheduler 
probability towards chances of system being at the deadlock 
state. The Q5 (=W) is like an idle state when no process in 
the queue left or otherwise and Q6 (=D) is an absorbing state 
where deadlock of system occurs. Waiting index measures 
the intensity of chance towards waiting transition faced by 
the scheduler under specified α and d. As special, if 
P[x(n)=Q5]=0 then [I(n)]case =1 which shows the scheduling 
scheme highly suffers from waiting possibility. If 
P[x(n)=Q5]=0 then [I(n)]case =0 reveals the high efficiency 
because the scheme is independent of the waiting fear. 
Therefore, ( )[ ] 10 ≤≤ case

nI  and P[x(n)=Q5]=1/2 provides 

index [I(n)]case =1/2. The ( )[ ] 2/10 ≤≤ case
nI is the lower 

zone of index measure while ( )[ ] 12/1 ≤< case
nI  is the 

upper zone as shown in fig 6.1.The lower zone reflects for 
better possible operation and efficiency of scheduling 
scheme.  

 

Fig. 4.5.1 (α=0.18, d=0.002 ) 

Fig. 4.5.2 (α=0.18, d=0.004 ) 

Fig. 4.5.3 (α=0.18, d=0.006 ) 

Fig. 4.5.4 (α=0.18, d=0.008 ) 



Int. J. of Advanced Networking and Applications                            425 
Volume: 02, Issue: 01, Pages:419-427  (2010)   
6.1 Calculation of Waiting Index Measure 
 
With reference to data obtained from computation under the 
effect of the data model with varying values of α and d , the 
calculation of waiting Index is performed . By a comparative 
study of these different cases described here, conclusion has 
been drawn about the efficiency of the system under the 
described conditions. 
 
This waiting index provides an intuitive view of the fact that 
how the system behaves in the varying  specified conditions. 
 
 
 
 
 
 
 
 
 
Index graph for case I 
 
On the basis of the above obtained values, a waiting index 
graph is drawn to conclude the result  
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Index graph for case II 
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Index graph for case III 
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Index graph for case IV 
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Index graph for case V 
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7.  Discussion on Graphs 
 
  These index graphs depicts the chances of queues going 
towards the waiting state. The data model approach clarifies 
the movement of the queues in specified varying conditions. 
Here the different cases can be outlined as the different 
combinations of α and d.        
     
In graph 6.1.1, the condition I is showing a slight decrease 
with the increasing quantum whereas the condition IV is 
experiencing initially a steep increase and a sudden drop 
after some quantum. In graph 6.1.2 the condition I and II are 
showing similar trend as in graph I whereas the waiting 
probability in condition III is showing an upward trend. In 
condition IV the drop can be seen more earlier then the 
previous conditions. In graph 6.1.3 condition I is showing a 
similar trend as in graph 6.1.1 and graph 6.1.2 whereas 
condition II is in steady state . A sudden drop in the waiting 
probability of condition III and IV can be noticed whereas 
the waiting probability of condition IV is constantly shifting 
towards 0. In graph 6.1.4 condition I is similar to the 
previous graphs but here condition II is also showing an 
upward trend. The drop in the waiting probability can be 
seen between the 3rd and 4th quantum. In graph 6.1.5  
condition I is finally showing an upward trend. Whereas 
condition II is showing a drop between 4th  and 5th quantum. 
The condition III is showing a strange negative pattern  and 
4th condition is out of range for consideration. 
 
 
 
 

Fig. 6.1.1 

Fig. 6.1.2 

Fig 6.1.3 

Fig 6.1.4 

Fig 6.1.5 
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8.   Conclusion 
 

The multi-level queue scheduling scheme have 
been reconsidered on the backdrop of the designed data 
model with five conditions, as members, which are 
compared using a Markov chain model. In each and every 
graph, with increasing value of d in the different specified 
conditions, an increasing trend of waiting probability can be 
observed. Although this model suggests the fact that the 
initial combinations of α and d are the better choice  as they 
are showing less chance of system going on waiting state 
then their higher counterparts. Overall, in the setup of 
Markov chain model and under waiting index as a 
performance measure, condition-I is better then condition- 
II, III and IV under the given assumptions.  
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